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Introduction to Fleet Data

Consider the following problem:

I When GE sells a gas turbine, they offer a Monitoring and
Diagnostics service

I GE has 1150 turbines currently being monitored, (and
hundreds are the 7FA model) (Source: Orbit, Vol. 31)

I Data must be processed remotely (GE M&D, Atlanta)

How do we (tractably) generate a model? How do we use this
model to detect anomalies?



Review: Confidence ellipsoid & exceedance monitoring
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I Consider the ellipsoid {y ∈ R2|(y − Bx)TΣ−1(y − Bx) ≤ α}.
I Represents a confidence bound.

I If we know y ∼ N (Bx ,Σ) in normal operation, then we use
Bx and Σ for anomaly detection.

I Bx alone doesn’t help us, need an accurate Σ.

I We will focus on finding B and Σ (x is assumed to be known).



What is fleet data?
Dataset is hierarchical:

I Unit: There exists N “units,” so the data is divided into N
subsets (indexed i = 1, ...,N).

I Time: Each of the N subsets contains T data points
(indexed t = 1, ...,T ).

I t interpreted as sample time.
I T is the same for each unit (i.e. each unit has the same

number of data points).

I Input/Output: Each unit has an input output structure that
is known a priori (input is xi (t), output is yi (t)).

I Multivariate data points Each output data point yi (t) and
input data point xi (t) is a vector in Rny and Rnx , respectively.

Therefore, we can summarize the data structure compactly by
writing {

{xi (t), yi (t)}Tt=1

}N

i=1



Objectives

We propose a regression model of the following form:

yi (t) = Bixi (t) + vi (t)

with the following known variables:

I yi (t) ∈ Rny is the (known) output of unit i at time t.

I xi (t) ∈ Rnx is the (known) exogenous input for unit i at time
t.

We want to choose Bi such that:

I each vi (t) has low covariance.

I Bi is “similar” to Bj , ∀ i 6= j

I The distribution of vi (t) is “similar” to that of vj(t).

We want reasonable computational complexity.



Regression approach

Recall the assumption:

yi (t) = Bixi (t) + vi (t)

For this specific approach, further define:
I The residual:

I vi (t)|S ∼ N (0,S), i.i.d.
I S ∈ Sny+ is the (unknown) residual covariance.

I The unit linear model:
I Bi |Btrue ∼ Nn,k(Btrue,S/α, I ), i.i.d.
I N(·, ·, ·) denotes the matrix normal distribution. For us, for

each column of Bi , bi ∼ N (btrue,S/α).
I α is a weight, chosen a priori.

I No prior information is given about Btrue or S .



MAP estimation of parameters

We find of B1, ...,BN , Btrue, and S which minimize the negative
log likelihood function.
Using the law of total probability,

`(B1, ...,BN ,Btrue,S |X ,Y) = − log f (X ,Y|B1, ...,BN ,Btrue, S)

= − log

(
N∏
i=1

T∏
t=1

f (vi (t)|B1, ...,BN ,Btrue,S)

)

=
N∑
i=1

(
− log f (Bi |Btrue,S)−

T∑
t=1

log f (vi (t)|Bi , S)

)

We have omitted the terms f (Btrue) and f (S), as there is no prior
information about Btrue or S (we can consider them to have
improper priors).



MAP estimation of parameters

Plugging in the log-likelihoods and simplifying:

` = NT log |S |+
N∑
i=1

(
α tr

(
(Bi − Btrue)TS−1(Bi − Btrue)

)
+ tr

(
(Yi − BiXi )

TS−1(Yi − BiXi )
))

I Xi and Yi are data matrices

I constant terms are omitted

I Convex in the variables S−1Bi , S−1Btrue, S−1



Normal equations
The normal equations are found by differentiating w.r.t. the
(matrix) variables. They are:

I Unit Model:

YiX
T
i = α(B̂i − Btrue) + B̂iXiX

T
i

I Average Model:

B̂true = (1/N)
N∑
i=1

Bi

I Fleetwide Residual Covariance:

Ŝ =
1

NT

N∑
i=1

(
α(Bi − Btrue)(Bi − Btrue)T

+ (Yi − BiXi )(Yi − BiXi )
T

)



Are we satisfied?

We chose Bi , Btrue and S to minimize:

` = NT log |S |+
N∑
i=1

(
α tr

(
(Bi − Btrue)TS−1(Bi − Btrue)

)
+ tr

(
(Yi − BiXi )

TS−1(Yi − BiXi )
))

We wanted to encode the idea:

I each vi (t) should have low covariance. (Satisfied)

I Bi should be “similar” to Bj , ∀ i 6= j (Satisfied)

I The covariance of vi (t) should be “similar” to that of vj(t).
(Unsatisfied)



Covariance approach

Recall the assumption:

yi (t) = Bixi (t) + vi (t)

For this specific approach, further define:
I The residual:

I vi (t)|S ∼ N (0,Si ), i.i.d.
I Si ∈ Sny+ is the (unknown) residual covariance.

I The unit covariance:
I Si ∈ Sn+, where Si |Strue ∼ W(Strue/p, p), i.i.d.
I W(·, ·) is the Wishart distribution (for random matrix

Z ∈ Rn×ν , with columns of Z normally distributed, zero-mean
i.i.d. random vectors with covariance Σ, then
ZZT ∼ W(Σ, ν)).

I p ∈ R is a (known) weight parameter

I We have no prior information about Bi or Strue.



MAP estimation of parameters

We find the MAP estimates of Strue, and Bi and Si , for all
i = 1, ...,N.
Maximize the log likelihood function:

`(S1, ...,SN ,B1, ...,BN , Strue|X ,Y)

= − log

(
N∏
i=1

T∏
t=1

f (vi (t)|S1, ...,SN ,B1, ...,BN ,Strue)

)

=
N∑
i=1

(
− log f (Si |Strue)−

T∑
t=1

log f (vi (t)|Si ,Bi )

)

As before, we ignore the terms f (Strue) and f (Bi ).



MAP estimation of parameters

Plugging in the log-likelihoods and simplifying:

= Np log |Strue|+
N∑
i=1

(
p tr

(
S−1

trueSi
)

+ (T + n + 1− p) log |Si |

+ tr
(

(Yi − BiXi )
TS−1

i (Yi − BiXi )
))

With change of variables, S−1
i = Pi , L

TL = S−1
true, and

B̃i = S−1
i Bi , this is convex for large T :

= −Np log
∣∣∣LTL∣∣∣+

N∑
i=1

(
p tr

(
LTP−1

i L
)
− (T + n + 1− p) log |Pi |

+ tr(Y T
i PiYi )− 2 tr(Y T

i B̃iXi ) + tr((B̃iXi )
TP−1

i (B̃iXi ))
)



Normal equations

Two of the normal equations are found by differentiating w.r.t. the
new variables, then substituting back into the natural variables:

I Unit Model:

YiX
T
i = B̂iXiX

T
i

I Average Covariance:

Ŝtrue = 1/N
N∑
i=1

Si

I Unit Covariance:

0 = Ŝi (−pS−1
true)Ŝi − (1 + n + T − p)Ŝi + YiY

T
i − BiXiX

T
i BT

i



Normal equations

0 = Ŝi (−pS−1
true)Ŝi − (1 + n + T − p)Ŝi + YiY

T
i − BiXiX

T
i BT

i

If we consider another change of variables:

I Q(r) = YiY
T
i − BiXiX

T
i BT

i

I A(r) = −(1/2)(1 + n + T − p)I

I B(r) = I

I R(r) = (1/p)Strue

This can be solved easily as an algebraic Riccati equation:

ATX + XA− XBR−1BTX + Q = 0



Normal equations
Summarizing:

YiX
T
i = B̂iXiX

T
i

0 = Ŝi (−pS−1
true)Ŝi − (1 + n + T − p)Ŝi + YiY

T
i − BiXiX

T
i BT

i

Ŝtrue = 1/N
N∑
i=1

Si

The following algorithm can be used to obtain Si , Strue, and Bi for
all i

1. Compute B̂i

2. Initialize Ŝi and Ŝtrue.

3. Compute Ŝi
4. Compute Ŝtrue

5. Check the variables have converged. If so, stop. If not, go to
step 3.

Convergence is guaranteed, by convexity



Now are we satisfied?

We chose Bi , Strue and Si to minimize:

` = Np log |Strue|+
N∑
i=1

(
p tr

(
S−1

trueSi
)

+ (T + n + 1− p) log |Si |

+ tr
(

(Yi − BiXi )
TS−1

i (Yi − BiXi )
))

We wanted to encode the idea:

I each vi (t) should have low covariance (satisfied)

I Bi should be “similar” to Bj , ∀ i 6= j (unsatisfied)

I The covariance of vi (t) should be “similar” to that of vj(t).
(satisfied, though not obvious)



Brief simulation example

yi (t) = Bixi (t) + vi (t)

Random variables were generated according to:

I xi (t) ∈ Rn xi (t) ∼ N (0,Σx), i.i.d. the (known) input of unit i
at time t.

I vi (t) ∈ Rn, vi (t) ∼ N (0, Si ), i.i.d., is the residual for unit i at
time t.

I Bi ∈ Rn×k , Bi ∼ Nn,k(Btrue, Si , I ) is the static linear map for
turbine i .

I Si ∼ W(Strue/p, p) is the covariance of the residual, with p
degrees of freedom.



Constants for simulation

Σx =


1 0.5 0.25 0

0.5 1 0.5 0
0.25 0.25 1 0

0 0 0 0.001

 Strue =

[
0.1 0.01

0.01 0.001

]

Btrue =

[
−29.62 −29.36 1 0.0733
0.0314 0.0385 0.947 −9.51× 10−5

]

T = 100 N = 50 p = 10 α = 1

Btrue obtained from “Performance monitoring of gas turbines,”
Journal of Orbit, Vol. 25, 2005



Results (unit covariance Error)

The error ‖Si − Ŝi‖ vs. i , for the regression model (green), the
covariance model (blue), and the naive model (red)



Results (unit model error)

The error ‖Bi − B̂i‖ vs. i , for the regression model (green), the
covariance model (blue), and the naive model (red)



Future work

I Using these approaches on real data will prove their efficacy.
We are actively seeking such (real) data.

I When are these formulations better than naive approaches?
When are they not?

I Is there a formulation that will acheive our original objectives?
As a reminder:

I each vi (t) should have low covariance
I Bi should be “similar” to Bj , ∀ i 6= j
I The covariance of vi (t) should be “similar” to that of vj(t).

I Is the Wishart distribution the best prior for the unit
covariances?
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