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Abstract— We present a reinforcement learning based ap-
proach to Demand Response. Demand Response (DR) adjusts
electrical energy demand in response to dynamic energy pricing
or other electrical grid signals. By suitably adjusting energy
prices, load can be shifted from peak energy consumption
periods to other periods, either by delaying energy usage or, in
some predictable situations, to an earlier time period, improving
operational efficiency and reducing emissions. The variability
of renewables can create an additional need to shift energy
consumption. Critical to a successful DR approach is learning
the consequences of deferring energy consumption on consumer
satisfaction, cost, and future energy behavior. This is a particu-
lar problem for residential or small commercial building energy
consumers where it is often difficult to cost effectively model the
behavior of consumers, to explicitly illicit their energy time of
use preferences, or explicitly understand the interaction of en-
ergy consuming devices. We use reinforcement learning methods
to address these issues. The approach learns the energy behavior
of consumers and optimally schedules the operation of devices
to minimize the tradeoff between consumer dis-satisfaction with
energy delay and energy cost. The approach comprehends both
consumer driven energy requests (reservations) but also, using
exploration methods, can explicitly anticipate requests, where
this will reduce cost or improve satisfaction such as heating
or cooling. We explore Q-Learning with eligibility traces and
importance-weighting to improve sample efficiency.

I. INTRODUCTION

Demand response (DR) systems [1]-[3] dynamically ad-
justs electrical demand in response to changing electrical
energy prices or other grid signals. DR offers several benefits.
By suitably adjusting energy prices, load can be shifted from
peak energy consumption periods to other periods, either by
delaying energy usage or, in some predictable situations, to
an earlier time period, improving operational efficiency and
reducing emissions. This, in turn, can improve operational
efficiency, reduce operating costs, improve capital efficiency,
and reduce harmful emissions and risk of outages. The vari-
ability of renewables can create an additional need to shift
energy consumption in order to better match energy demand
with unforecasted changes in electrical energy generation.
The benefit is a possible reduction in backup (ancillary)
generation frequently used to hedge renewable sources. DR
has been extensively investigated for larger energy users and
has been implemented in many areas (e.g., [4], [5]).

Residential and small building DR [6]-[9] offers similar
potential benefits. DR for residential and small commercial
buildings was estimated to account for as much as 65%
of the total energy savings potential of DR. But residential

and commercial buildings face several challenges. Techni-
cal challenges include the deployment of an infrastructure
supplying real-time pricing information to energy consumers
in a useful way, networking devices, ensuring security, and
advanced metering [9], [10]. There are also challenges in
capturing the consequences of deferring energy consumption
in small commercial buildings, where detailed energy usage
and energy flow models are frequently not available, and
in relieving energy consumers from having to make a long
sequence of explicit energy consumption decisions. In small
commercial buildings it can be impractical to fully model the
behavior of heating and cooling systems and their perceived
impact on occupant comfort. With real-time variable pricing,
consumers face an infinite sequence of decisions to either
use a particular device now and consume energy at current
(known) prices or to defer using the device until later at
possibly unknown prices. Each decision implicitly requires
the consumer to estimate what future energy prices may
be and weigh this differential cost against the dis-utility of
waiting, especially when many of these decisions will have
limited short term financial impact on the consumer [11]. As
a consequence, we believe developing fully-automated En-
ergy Management Systems (EMS) [9], [12] are a necessary
prerequisite to DR in residential and small building settings.

Critical to a successful DR EMS approach is learning the
consequences of deferring energy consumption on consumer
satisfaction, cost, and future energy behavior. In [11] we
present a residential EMS approach that used reinforcement
learning to learn energy consumer’s behavior and auto-
matically make optimal energy scheduling and allocation
decisions in the face of uncertain future energy prices.
This approach assumed consumer dis-satisfaction with delay
could be captured by (known) dis-utility functions and that
all energy usage was explicitly initiated by a consumer
energy request or reservation (e.g. press of a button). Both
energy prices and consumer energy requests are modeled a
Markov processes with unknown distributions.

Here, we extend this work by removing these two as-
sumptions and extend it to residential and small commercial
buildings applications. The approach samples consumer dis-
utility with different scheduling policy options and learns
the costs associated with each possible policy. We also
consider a device centered point of view. First a device
can receive a request from a consumer and schedule an
optimal time to run it and second the device can initiate
a request itself, speculating that the device will be needed



at a forecastable time. Probing is used to allow the device
initiated patterns to find the best time to run the device to
maximize consumer satisfaction. We model the problem as
a discounted cost infinite horizon Markov decision problem
with unknown transition probabilities and with sampled
delay dis-utility values. We use Q-learning [13], a type
of temporal-difference learning, to allow the algorithm to
learn the behaviors of consumers and to optimally make
energy consumption scheduling decisions. We explore Q-
Learning with eligibility traces and importance-weighting to
improve sample efficiency. The simulation result in Section
IV indicates that our proposed Q-learning algorithm reduces
the consumer’s cost by 56% in an illustrative example.

The remainder of the paper is organized as follows: in
Section II, we pose the optimal demand response problem
as an infinite horizon discounted Markov decision process
(MDP), and decomposes this high-dimensional MDP into a
collection of low-dimensional MDPs under suitable assump-
tions; in Section III, we propose a ()-learning algorithm with
eligibility traces and importance-weighting as the RL-EMS
algorithm; simulation results are shown in Section IV and
we conclude in Section V.

II. DEVICE BASED MDP MODEL

This section is organized as follows: Subsection II-A
briefly discusses the Reinforcement Learning based Energy
Management System (RL-EMS) and consumer requests;
Subsection II-B reviews the concept of utility function and
discusses the functional form of the “dis-utility function”
of the electricity consumer; Subsection II-D formulates the
optimal demand response problem as a collection of device
based MDPs, the performance metric is described in II-
C and the dynamic programming (DP) solution to such
MDPs are presented in Subsection II-E. In this section
we assume that the probabilistic properties of consumer
behavior and electricity pricing is known as are the precise
forms of consumer utility functions. In Section III, we relax
these unrealistic assumptions using reinforcement learning
techniques.

A. RL-EMS and Consumer Requests

Demand response (DR) is a key component of the smart
grid and enables the dynamic adjustment of electrical de-
mand in response to pricing signals. It is well-known that
DR offers benefits in both the consumer level and the power
system level. Specifically, DR not only can optimize an
electricity consumer’s utility by shifting her requests from
periods of high electricity price to other periods, but also
has the potential to improve the “social welfare” of the whole
power system if the electricity price is suitably adjusted. As
a result, DR has been widely investigated and implemented
in many areas.

As has been pointed out in O’Neill et al. [11], the
“decision fatigue” of electricity consumers in the residential
sector necessitates the development of Reinforcement Learn-
ing based Energy Management Systems (RL-EMS), which
are algorithms that learn a consumer’s behavior and then

automatically make optimal consumer request scheduling
and prediction decisions for smart devices. Specifically, in
the vision of smart grid, we conjecture that future RL-EMS
should perform the following functions:

e« RL-EMS receives requests from the consumers, and
then schedules when to fulfill the received requests. We
henceforth refer to this case as a requested job.

o If a smart device managed by the RL-EMS is idle (i.e.
currently there is no request for that device), RL-EMS
could speculatively power a device. We henceforth refer
to this case as a speculative job. For instance, in a small
commercial building, the RL-EMS algorithm might
speculatively turn on the building’s air conditioning in
advance of the tenets arrival to capture early morning
lower energy costs or to mask the latency of cooling
the building. Notice that we should not allow RL-EMS
to do speculative jobs on all the smart devices (such as
dishwasher).

We assume time is discrete t = 0,1, - - - and that there are
N smart devices managed by the RL-EMS and numbered
n=1,2--- N. To simplify exposition, we assume that all
the jobs done by device n are standardized and hence they
can be completed in one time step and consume a constant
energy C(n), which only depends on the type of the smart
device. This assumption can be readily relaxed to devices
with different operating periods. We further assume that the
RL-EMS will ignore all the consumer requests to device n
if device n currently has an unsatisfied request, but the RL-
EMS allows a consumer to cancel an existent unsatisfied
request. Specifically, if the consumer wants to replace an
existent request with a new request, he must cancel the
existent request first, and then start the new request. Notice
under this assumption, at each time a smart device has at
most one unsatisfied request.

Each consumer request is represented by a four-tuple J =
(n,7r,7g,9), Where

« n denotes the requested device;

o T, is the request time and denotes when the RL-EMS
receives this request;

e T4 is the target time and denotes when the consumers
prefer this request to be satisfied;

o g denotes the priority of this request, and higher priority
implies the “stronger preference” of the consumer that
he wants the request to be satisfied at a time close to
the target time 7.

Notice that the target time 7, is not necessarily equal to the
request time 7., specifically, the consumers might request
to use a device in a later time. Thus, we only require that
Tg = Tr

We observe that in practice, the consumer does not allow a
request to be delayed for an arbitrarily long time. In addition,
for a request J = (n, 7,74, g), it is unreasonable to assume
that 7, — 7,, the difference between the target time and the
request time, can be arbitrarily large. Thus, in this paper, we
assume that (1) for any request J = (n, 7,74, g), its target
time 7, must satisfy 7. < 7, < 7. + W(n), and (2) if the
request J = (n, 7, 74, g) is not fulfilled by time 7, + W (n),



then it will be cancelled by the consumer for sure, where
W(n) is a known time window and only depends on the
type of device.

The difference between our RL-EMS model and those in
previous literatures (e.g. [11]). To the best of our knowledge,
our RL-EMS model is more general in the following aspects:
(1) RL-EMS is allowed to perform speculative jobs; (2) a
request’s target time can be different from its request time,
and requests are allowed to have different priorities; (3) an
unsatisfied request can be canceled by the consumer.

B. Consumer Preference and Dis-utility Function

To formalize the notion of optimal demand response, we
define a performance metric which captures the electricity
consumer’s preferences called Utility functions, often used
in the economics literature [14]. We assume utility functions
are concave, strictly increasing and satisfy the following
properties:

« A rational consumer prefers low electricity price to high
electricity price.

o For a requested job sent to the RL-EMS, a rational
consumer prefers that job is completed at a time close
to the target time, and the higher the request’s priority
is, the “stronger” this preference is.

o For a speculative job done by the RL-EMS, a rational
consumer will be “happy” if the RL-EMS has done a
“good” job, and will be “unhappy” if it has done a “bad”
job scheduling a device.

o When a rational consumer decides to cancel an unsatis-
fied requested job, he is usually “unhappy” if the target
time has already passed.

e A rational consumer usually cares more about her
spending and feeling at current time than those in the
future.

For notational convenience we work with the negative of
utility functions and call them dis-utility functions

U [(2(s), T (s)), V0 < s < 1]. (1)

We use the following notation for the arguments of
the dis-utility function. For each time ¢, we define dis-
joint sets of smart devices D(t) C {1,2,---,N} as
D(t) = {devices that do a job at time ¢}. Furthermore, we
use z(t) € {0,1}" to denote the status of the set of devices
at time ¢. Specifically, let z(¢,n) denote the nth component
of z(t), then z(t,n) = 1 indicates that device n is on at
time ¢ and z(t,n) = 0 indicates that device n is off at time
t. Let J(t) denote the set of unsatisfied requests at time
t. Recall that at time ¢ device n has at most one unsatisfied
request, thus we use J(¢,7n) to denote the unsatisfied request
of device n at time ¢ if that request exists; otherwise, we
set J(t,n) = NULL.Notice that (z(s), J(s)), V0 < s <t
completely specifies the “history” of device status, consumer
behavior and the RL-EMS decisions until time ¢.
We make the following assumption:
Assumption 1: For any t > 0, the dis-utility function U

is additive over the devices, that is

T {(a(s), T (), Y0 < s < t}

N
= Y 0" ((a(s,m),J(5,n), WO <5< t], (2
n=1

where U™ captures the consumer’s dis-utility at time t for
Device n and z(s,n), J(s,n) is defined above.

Furthermore, in this paper, we assume the dis-utility
function U“™) takes the following forms:

o If Device n satisfies request J(¢t,n) = (n,7.,74,9) at
time ¢, we assume

U™ [(2(s,n), J(s,n)), YO < s < t] = U (t = 74,9), (3)

where the subscript “r” denotes that it is the dis-utility
incurred when a request is satisfied, and g is the priority
of the request. Note ¢ —7, captures not only the distance
between the current time ¢ and the request’s target time
T4, but also whether or not the target time has passed.
In practice, U{™ should be small when t—T4 is close to
0 and increases as ¢t — 7, deviates from 0; furthermore,
the higher the priority g, the higher this increase rate

will be.
o Similarly, if the request J(¢t,n) = (n,7.,74,9) is
cancelled by the consumer at time ¢, we assume

g [(z(s,n), J(s,m)), V0 <s<t]= U,E")(t —74,9), @)

where the subscript “c” denotes that it is the dis-utility
incurred when a request is cancelled. In practice, ﬁc(n)
should be very small if ¢ < 7,4, and it will increase with
t when ¢t > 7,; furthermore, the higher the priority g,

the higher this increase rate will be.
« If Device n does a speculative job at time ¢, we assume
that

U™ [(2(s,n), J(s,n)), YO < s < t] = UM (t— 1),  (5)

where the subscript “s” denotes that it is the dis-utility
incurred when a speculative job is done, and 7, — 1 is
the time when the previous job on Device n (either
requested or speculative) is completed or cancelled.
In practice, ffs(") should decrease as ¢ — 7, increases;
the large (LS”) for small ¢ — 7, prevents too frequent
speculative jobs.
o Otherwise, we assume that

U™ [(2(s,n), J(s,n)), YO < s < t] = 0.

It is worth pointing out that the dis-utility function described
in this section is quite general, and it is very challenging to
derive the specific functional forms of U™, U™ and U{™.

C. Performance Metric

We assume the cost function of the consumer at time ¢
has the following form:

P(t) Y Cn)+~0 [(2(5),T(s), YO < s <t],  (6)
neD(t)

where P(t) is the electricity price at time ¢ and U is a
dis-utility function capturing the consumer’s “unhappiness”
at time ¢. Specifically, notice that }_, 5y C(n) is the



total electricity energy consumed at time ¢, and hence
P(t)>_,ep() C(n) is the electricity bill the consumer pays
at time t. We assume the consumer’s dis-utility at time ¢
depends on the “history” (z(s), J(s)), V0 < s < ¢ and
v > 0 represents the tradeoff between the electricity bill

paid and the consumer’s dis-utility.

Notice that from the RL-EMS’s perspective, both the
electricity price and the consumer behavior are exogenous
and stochastic, thus, in this paper, we assume that RL-EMS
aims to minimize the expected infinite-horizon discounted
cost:

EY a'| Y P(tC(n)+1T0" [(z(s), T (), V0 < s < t]] :

t=0 neD(t)
where 0 < a < 1 is the discrete-time discount and captures
the assumption that a rational consumer cares more about
her spending/feeling at current time than those in the future.
Notice that in this problem formulation, the state at time
tis (P(t),z(s)V0<s<t—1,J(s)¥V0 < s <t), and the
action is z(t).

Under Assumption 1, the dis-utility function is decompos-
able and the cost function can be written as

N

3 [E {Z o' [P(t)C(n)1(n € D(t))

n=1

+ AT [(2(s,n), J(s,m)), V0 < s < t]] }] . @

D. Device Based MDP Model

In this subsection we formulate the problem as Markov
Decision Process, MDP. We make the following probabilistic
assumption:

Assumption 2: Both the electricity price P(t) and the
consumer requests to the RL-EMS follow exogenous Markov
chains. Furthermore, we assume that

o FElectricity price process is independent of the consumer
requests process.
o Consumer requests to different devices are independent.

Under both Assumptions 1 and 2, our objective is to
find the optimal scheduling policy to minimize (7). We can
reformulate this as an infinite-horizon MDP,

Z [minE {Zat [P(t)C(n)1(n € D(t))
+ U™ [(2(5,n), I(s,n)), YO < s < t]] }] , 8)

which decomposes over devices.

In the remainder of this paper, we focus on deriving the
optimal scheduling/prediction policy for a single device and
will drop the superscript n. For example, we will use W
instead of W(n) to denote the time window and represent
a request as J = (7,74, 9). We also use the term “smart
device” and “RL-EMS” interchangably henceforth, since due
to the decomposition of the problem, one can think each
smart device has its own RL-EMS.

We further assume that the timeline for a smart device
can be divided into “episodes”. Specifically, we assume that
whenever the smart device completes a job (either speculative
or requested) or the current unsatisfied request is canceled
by the consumer, the current episode terminates. In the next

time step, the smart device “regenerate” its state according
to a fixed distribution 7y and a new episode starts. Thus,
each episode in the timeline corresponds to a finite-horizon
MDP. The notion of episode is illustrated in Figure 1.

L.l
Alobis Done Or State Regeneration at time t+1

Cancelled at time t, Start of Episode k+1
Episode k Ends

>

time

Start of
Episode k

Fig. 1. Tllustration of the notion of episode

The state of the finite-horizon MDP at time ¢ is
a(t) = [P(t),s(t),9(t)]" €8,

where P(t) is the exogenous electricity price at time ¢, s(t)
is the elapsed time at time ¢, g(t) is the priority of request
at time ¢ and S is the state space. Specifically, we define

s(t) = {

where 7, is the start time of the current episode, and 7, is
the target time of the received request. Furthermore, once
a request is received in the current episode, we assume its
priority g(t) € {1,2, -+, gmax }; On the other hand, we use
g(t) = 0 to denote that no request has yet been received in
the current episode.

Since the electricity price is exoqgenous, we can partition
the state x(t) = [P(t),s(t),g(t)]" as the “price portion”
P(t) and “device portion” [s(t), g(t)]" . The “device portion”
of the MDP state transition model is summarized in Figure 2,
notice that there are (2W +1)gmaz + W +1 “device portion”
states. If the price Markov chain has P,,,, state variables,
the cardinality of the state space for the device based
MDP is |S| = Pras [(QW +1)gmaz + W + 1}, which is

polynomial in P4, W, W and Gmaz- We now describe the
device based MDP model in detail:

o Recall P(t) is assumed to follow an exogenous Markov
Chain with P,,,, state variables. The transition proba-
bility from P(t) to P(t + 1) is denoted as Pr(P(t +
1)|P(t)).

o If the smart device has not received a consumer request
in the current episode, recall that we set g(t) = 0 and
s(t) =t — 7,. The current action space is A (z(t)) =
{off, on}. Notice that:

1) If action “off” is selected, the current cost is
® (z(t),a(t),z(t+ 1)) = 0. Then the smart de-
vice receives a consumer request (t + 1,7,,9)
at the next time step (time ¢ + 1) with prob-
ability ps(s),t41-7,,9» Where ¢t + 1 < 7, <
t+1+Wand g € {1,2,-- ,gmazx}- In other
words, the MDP transits to the state x(¢ +
1) = [P(t+1),t+1—7,49]" with probability
Ps(t),t+1-14,9> fOr any t +1 < 75 < ¢+ 1+
W and any g € {1,2, -, gmaz} (notice that
the target time and priority together specify the

t—Tp
t— 1Ty

no request received in the current episode
otherwise



Priority 1 Priority 2 Priority g,
o(W,1) o(W,2) o(W,gs)
) ° °
e o o
(-W+1,1) (-W+1,2) (-W+1,814,)
(-W,1) (-W,2)
P(1,°)
e o

(1,0)

No request received

Fig. 2. The state transition model of the “device portion”. Notice that each
circle corresponds to a “device portion” state [s(t), g(¢)]” and each square
corresponds to the termination of the current episode and regeneration in
the next time step. The hallow arrows indicate the state transitions under
action “on”, while the line arrows indicate the state transitions under action
“off”. The bold line arrows across the dotted line indicate the fact that the
states below the dotted line can transit to many states above the dotted line,
since there are (W + 1)gmaa types of requests.

type of the received request). On the other hand,
t+14+W gmax

with probability 1— > > py)41-r,.9- the

Tq—tJrl g=1
smart device does not receive the consumer request

at time ¢ 4+ 1 and transits to the state z(t + 1) =
[P(t+1),s(t)+1,0]"

If action “on” 1is selected, the current cost is
® (2(t),a(t), z(t + 1)) = P(t)C(n) +Us (s(t)),
where U (s(t)) is defined in (5). Then the current
episode terminates and the smart device regener-
ates its state based on distribution 7.

2)

Notice that the transition probability ps)¢+1--,,4 and
the dis-utility Uy (s(t)) depends on s(t), in order to
ensure the state space is finite, we assume that if s(t) >
W, we have psp),i11-7,,9 = PW t41-r,.9 V714 Vg, and
U, (s(t)) = U, (W) !

o If the smart device has already received a consumer
request in the current episode but has not satisfied this
request, recall we set s(t) = t — 74, where 7, is the
target time of this request. Notice that the action space
A (z(t)) = {off, on}. Notice that:

1) If action “off” is selected, then with probability
Ds(t),g(t)» Nothing will occur and the MDP transits
to the state z(t + 1) = [P(t + 1), s(t) + 1, g(1)]”
and the cost associated with this transition is
® (z(t),a(t),z(t+1)) = 0. On the other hand,
with probability 1 — py(s),g(+). the consumer will
cancel this request, then the current episode ter-
minates and the smart device regenerates its state

IThat is, when s(t) > W and action “off” is selected, with probability
t+14+W gmazx

1= PW t+1-74,9°
Tg=t+1 g=1
state.

the smart device will stay at the same

based on distribution my. The cost associated
with this transition is @ (x(t),a(t), z(t + 1))
~U.(5(t), g(t)), where U, is defined in (4). Notice
that if s(t) = W, ﬁs(t),g(t) =0.

If action “on” is selected, the current cost
is ®(x(t),alt),z(t+1)) Pt)C(n) +
~U, (s(t),g(t)), where U, (s(t),g(t)) is defined
in (3). Then the current episode terminates and
the smart device regenerates its state based on

distribution 7g.

2)

E. Dynamic Programming Solution

If the transition model of the device based MDP and the
dis-utility function of the consumer are known, the device
based MDP in each episode can be solved by finite-horizon
dynamic programming (DP). Specifically, once an action
“on” is selected, the current episode terminates and the smart
device regenerates its state and starts a new episode in the
next time step. Thus, in each episode, the device based MDP
is an optimal stopping problem. Following ideas in classical
DP, in this subsection, we compute the optimal ()-function
based on backward induction.

Recall that (t) = [P(t), s(t), g(t)]"
{off, on}, we have

and A(z(t)) = A=

o If the smart device has not received a consumer request
in the current episode, we have

Q" (x(t),on) = P(H)C(n) +Us (s(t)) .
and Q* (z(t), off) =

Imax

aEpei1) Z Zpsm, ,gman ([P(t—i—l),s

Vi ,a)
s/'=—W g=1
+ (U= pa) mig @ ([P + 1,50+ 1,01 0)]

where py;) = Z i Wzg 1” Ps(t),s',g is the proba-
bility that a consumer request will be received in the
next time step, and 3(t+1) = s(t) + 1 if s(t) < W and
S(t+1)=Wif s(t)=W.
o If the smart device has already received a consumer
request in the current episode, we have

Q" (x(t),on) = P(t)C(n) +U. (s(1),9(t)) ,

and Q* (z(t), off) =

aPs(e),g()EP(+1) [min Q ([P(t +1),5(t) + 1, 9(1)]" a)]
acA
(L = Boey,g0)7Ue (5(1), (1)
if s(t) < W and Q* (z(t),off) = ~U.(W,g(t)) if
s(t)y=W.

From the above Bellman equations, it is obvious that Q*
can be exactly computed based on backward induction. We
observe that this computation is tractable since the cardinality

of the state space in a device based MDP is usually small.
Once @Q* is available, one optimal policy p* is

pr(z(t)) € ar(lgerillin Q*(z(t),a).

)



III. RL-EMS ALGORITHM

In Section II, the optimal DR problem of an electricity
consumer is formulated as an infinite-horizon MDP of the
RL-EMS, and this MDP is decomposed over devices under
suitable assumptions. Furthermore, we show that if the
transition model and the cost ® of that device based MDP
is known, the optimal scheduling/prediction policy can be
derived based on a finite-horizon DP algorithm and this
computation is tractable.

However, in practice, the transition probabilities and dis-
utility functions are not known and can be different for differ-
ent devices or people. To solve this problem, we introduce
an reinforcement learning (RL) algorithm. Specifically, in
the classical RL literature, the environment is consist of an
an unknown MDP, and the agent (decision-maker) learns
how to make decisions from consequences of actions while
interacting with the environment. Notice in the optimal DR
problem, the “agent” is the RL-EMS and the “environment”
includes both the exogenous electricity price and the elec-
tricity consumer (see Figure 3). We assume the RL-EMS
knows the state space S, action space .4, but needs to learn
the transition model and the dis-utility of the consumer
based on its experience. There are various RL algorithms

Environment

Agent Electricity
Action .
Price
RL-EMS
Observation
Consumer

Fig. 3. Tllustration of the Reinforcement Learning Model

(see [13]), and we conjecture that many of them can be
implemented in the RL-EMS. In this section, we propose
to implement a variant of Q()\) algorithm (see [15]) in
the RL-EMS. The main advantage of the Q(\) algorithm
is that it incorporates the eligible trace and importance
sampling into consideration, and hence is expected to learn
the optimal policy more efficiently than the classical Q-
learning algorithm.

We briefly motivate our Q()) algorithm. As is in the
classical @-learning, the temporal difference (TD) error at
time ¢ is

& = @ (x(t),alt),z(t+1))
+ ozrr(lli/n Q: (:r(t +1), a/) — Q¢ (z(t),a(t)),

where @ is the instantaneous cost function and @Q; € RIS/l

represents (vector) (J-value function estimate at time t. The
update in the classical Q)-learning algorithm is as follows:

Qrv1(z(t), a(t)) = Qu(z(1), a(t)) + Bidr,

where, 8; > 0 denotes step-size at time ¢. Under proper step-
size conditions, ()-learning is guaranteed to converge to the

optimal solution if all states are visited infinitely often (see

[13]).

We can combine -learning with eligibility traces (see
[13]). Eligibility traces are essential when data is generated in
a temporally fine resolution, and they carry information about
previously seen states in cause and effect. We use a version
of eligibility traces that is derived in [15] (also see [16]).
Algorithm 1 shows how to use ()-learning with eligibility
traces. Note for the case where A = 0 we get classical Q-
learning.

Here, we have considered e; = ¥y + prades—1, where ey
is the eligibility trace vector, 1), is a binary vector whose
only nonzero element is (z(t),a(t)), « is the discrete-time
discount rate, A is a pre-specified parameter in the Q(\)
algorithm and p; captures the notion of importance sampling.
Notice, Q-learning is an off-policy learning algorithm, that
is while the agent is following its own behavior policy it
can learn about the greedy target policy (here, greedy target
policy refers to the policy which is greedy with respect to
the negative value of the current estimate for Q-functions).
(Thus, the importance sampling ration, p;, refers to the ratio
between the greedy target policy and the agent’s behavior
policy for choosing action a; at time ¢.) Specifically, let py :
SxA— EO, 1] be the (randomized) behavioral policy used

in the Q(\) algorithm, we define
— L ifa(t € argmin Q¢(z(t), a
S rncoizo) ( ). gmin Q. (x(t), a) ©
0 otherwise

Please refer to [15] for complete derivation of this algorithm.
Notice that in our algorithm, the eligibility traces are updated
according to an importance-weight scenario, which is differ-
ent than Watkins’s () algorithm (see [13]), where p; is
considered either 1 or 0.

Finally, we specify the behavioral policy pu; in this
Q-learning algorithm. There are many choices of pp, in
this paper, we choose pu; as the e-softmin policy. That
is, with probability 1 — ¢, we choose a(t) = a* €
argminge 4(,(4)) Q¢ (¥(t), @) and with probability €, we
choose a(t) according to a randomized softmin policy

exp [~Qu(x(t), a(t)) /n]
p(a(t)|(t) = ,
DA &P [—Qu(z(t), ) /n]
where ¢ is the “exploration” probability and n > 0 is the

“temperature” of this softmin policy. The Q(\) algorithm is
described in Algorithm 1.

IV. SIMULATION RESULT

In this section, we present the simulation result of the
proposed RL-EMS algorithm on an illustrative example. As
is expected, the simulation result indicates that the proposed
RL-EMS algorithm learns a near-optimal request schedul-
ing/prediction policy after a finite number of episodes.

Specifically, in this numerical example, we assume the
exogenous price Markov chain has P,,,, = 4 states, and
the consumer requests have two different priorities, “high”
and “normal”. We set the time window W = 4, W = 5,
the discrete-time discount a = 0.995 and the “tradeoff” v =
0.05. Thus, there are |S| = 96 states in this example.

To simplify exposition, we assume that this example is
normalized so that both the highest electricity price and



Algorithm 1 Q()\): Q-learning with eligibility traces

1: Initialize Qo arbitrarily, set eligibility parameter A\ €
[0, 1].
2: Repeat for each episode:
3: Choose a small constant step-size 5 > 0 for each
episode.
4: Initialize eligibility trace vector e;_1 = 0.
5. Take a(t) from x(t) according to u, (e.g. e-softmin
policy), and arrive at (¢ + 1).
6: for each time step in an episode do
7. Observe sample, (x(t), a(t), z(t+1), P;) at time step
t, where ®, is the instantaneous cost.
8: Oy e D (z(t),alt),z(t+1)) +
aming Q; (z(t +1),a’) — Q; (z(t), a(t)).
9. If a(t) € argmin, Qi(x(t),a), then p, <+
m; otherwise p; < 0. . .
10 ey = Yy + prades_1, where i, is a binary vector
whose only nonzero element is (x(t), a(t)).
11: Qpy1 + Q¢ + Bdsey.
12: end for

the energy consumed by a standardized job are 1. The dis-
utility functions UT, ﬁc and Us are illustrated in Figure
4(a), 4(b) and 4(c). Notice that these dis-utility functions
satisfy the convexity and monotonicity properties discussed
in Subsection II-B.

As to the transition model, we assume that if the smart
device has not received a consumer request in the current
episode, then under action “off”, it will receive a consumer
request in the next time step with probability py(;). Notice
that p,(¢) is chosen to be an increasing function of s(t) (see
Figure 4(d)). We further notice that there are (W +1)gaz =
10 types of consumer requests (with different target times
and priorities), for simplicity, we assume these 10 types of
requests are equally likely.

Furthermore, if the smart device has received a consumer
request in the current episode, then under action “off”, the
unsatisfied request will be cancelled with probability pg ).
In this example, we assume the “cancellation probability” p
only depends on the elapsed time s(t) and is independent of
the priority g(t). We choose p(;) as an increasing function of
s(t) (see Figure 4(e)). Finally, we assume that when the smart
device regenerates its state, with probability 1, the regener-
ated “device portion” state is [s(t + 1) = 0, g(t + 1) = 0]".

Before describing the implementation of the RL-EMS
algorithm for this illustrative example, we first define
the performance metric. Let Q* denote the optimal Q-
function of the finite-horizon device based MDP, and
mp be the stationary distribution of the exogenous price
Markov chain, since the smart device regenerates its state
to [s(t+1)=0,9(t+1) =0]", we define the “optimal
performance” V* as

V* == EPN#}, ggHQ* ([P,O,O]T,a) .

For any policy u: S x A — [0,1], we define V (), the
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Fig. 4. Dis-utility Functions and Transition Model

performance of policy p, as
V(p) = IEPNW,*D ggﬂ Qu ([P, O,O]T,a) )

where @, is the Q-function of the finite-horizon device based
MDP under policy p. Notice that (), can also be computed
based on backward induction, and due to the optimality of
Q*, we have Q,(z,a) > Q*(x,a) for any (z,a) € S x A,
which implies that V() > V*. We define the normalized
performance of policy p as V(u) = V(1) /V*, thus V(i) >
1 and obviously V(u*) = 1.

With the above-defined performance metric, we first quan-
tify the DR potential in this example. Specifically, let fpqse
denote the default policy without DR (i.e. the device will
never do a speculative job and all the requested jobs will
be done at their target times). We use this default policy as
the baseline in this simulation example. Notice V (fpqse) =
2.2754 in this example (see Figure 5); in other words, DR
has the potential to reduce the consumer’s cost by 56% in
each episode.

Furthermore, for each function @) : Sx.A — R, we use 11
to denote a policy greedy to Q. > We define the normalized
performance of @ as V (ug).

We now describe how we implement the proposed RL-
EMS algorithm (Q()) algorithm). We choose the eligibility
parameter A = 0.6, “exploration probability” ¢ = 0.05, and

2If there are multiple greedy policies, choose (¢ as an arbitrary greedy
policy.
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Fig. 5. Simulation Result, where the curve denotes the sample average
normalized performance V,'"9, and the lengths of error bars denote the
standard deviation.

k, we choose the step-size 5 = max 101(?821«’0'05 . We
initialize the RL-EMS algorithm by setting Q)¢ = 0.

The simulation result is summarized in Figure 5. Specif-
ically, we run the proposed RL-EMS algorithm for 8,000
episodes, and repeat the simulation for 100 times. Let Qy, ;
denote the Q-function learned after episode %k in the ith
simulation, we define Vk(avg ), the sample average normalized
performance after episode k as

the “temperature” of the softmin policy n = 0.1. For e?isode

7 | o
Vk(avg) = 10 Z V (1Qr.:)

i=1

and the associated standard deviation is

B | oo ] )
std (Vk) = @ Z {V (:L"le') - Vk((wg):|

i=1

We plot V) and std (Vi) against the number of episodes
in Figure 5.

From Figure 5, we see that in this illustrative example, the
Vk(avg ), the sample average normalized performance of the
RL-EMS algorithm after episode k outperforms the baseline
V (tpase) With k < 100, which suggests that in expectation
the RL-EMS algorithm will outperform the baseline very
quickly. We further notice that for £ > 7000, Vk(avg ) is very
close to 1 (the optimal performance) and the standard devi-
ation approaches to 0, which suggests that if the proposed
RL-EMS algorithm has been run for a sufficiently long time,
it will achieve a near-optimal performance almost surely.

V. CONCLUSION

We present a reinforcement learning approach to DR for
residential and small commercial buildings. The approach
reduces average energy costs by shifting the time of operation
of energy consuming devices either by delaying their opera-
tion or by anticipating their future use and operating them at

an optimal earlier time (e.g. HVAC). The algorithm selects
operating times that balance consumer dissatisfaction with
energy costs and learns consumer choices and preferences,
but without prior knowledge of the distribution of energy
prices or consumer utility functions. The algorithm uses Q-
learning with eligibility traces to learn consumer choices
and time preferences. The simulation result indicates that
this algorithm reduces the consumer’s cost by 56% in an
illustrative example. Future work includes investigating other
RL algorithms with improved sample efficiency.

REFERENCES

[1] S. Borenstein, M. Jaske, and A. Rosenfeld, “Dynamic pricing,
advanced metering, and demand response in electricity markets,”
UC Berkeley: Center for the Study of Energy Markets, Oct. 2002.
[Online]. Available: http://www.escholarship.org/uc/item/11w8d6m4

[2] S. Braithwait and K. Eakin, “The role of
demand  response in  electric  power market design,”
Edison Electric Institute, 2002. [Online]. Available:

http://www.eei.org/industry _issues/retail _services_and_delivery/wise_en
ergy -use/demand_response/demandresponserole.pdf

[3] G. Barbose, C. Goldman, and B. Neenan, “A survey of utility
experience with real time pricing,” Lawrence Berkeley National
Laboratory: Lawrence Berkeley National Laboratory, 2004. [Online].
Available: http://www.escholarship.org/uc/item/8685983¢

[4] J. Roos and I. Lane, “Industrial power demand response analysis for
one-part real-time pricing,” Power Systems, IEEE Transactions on,
vol. 13, no. 1, pp. 159 —-164, feb 1998.

[5] M. A. Piette, O. Sezgen, D.Watson, N. Motegi, C. Shockman,
and L. ten Hope, “Development and evaluation of fully automated
demand response in large facilities,” Jan. 2005. [Online]. Available:
http://escholarship.org/uc/item/4r45b9zt

[6] K. Herter, “An exploratory analysis of California residential
customer response to critical peak pricing of electricity,” Energy,
vol. 32, no. 1, pp. 25 — 34, Jan. 2007. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V2S-4JG5F91-
2/2/bb70d546082f9f5483829aabeef5279%

“Residential implementation of critical-peak pricing of
electricity,” Energy Policy, vol. 35, no. 4, pp. 2121 — 2130, 2007. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V2W-
4KSSWHP-2/2/57823b87cba8355805b5896909d1f016

[8] A. Faruqui and S. George, “Quantifying customer response to dynamic
pricing,” The Electricity Journal, vol. 18, no. 4, pp. 53 — 63, 2005. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6VSS-
4G1WY67-3/2/44466f47c4dd993cbf13c290bd91dc97

[9] E. Koch and M. Piette, “Architecture concepts and technical issues for
an open, interoperable automated demand response infrastructure,” in
Grid Interop Forum, Albuquerque, NM, US, Nov. 2007.

[10] M. LeMay, R. Nelli, G. Gross, and C. A. Gunter, “An integrated
architecture for demand response communications and control,” in
Proc. of the 41st Hawaii International Conference on System Sciences,
2008.

[11] D. ONeill, M. Levorato, A. J. Goldsmith, and U. Mitra, “Residential
demand response using reinforcement learning,” in IEEE SmartGrid-
Comm, Gaithersburg, Maryland, USA, OCT 2010.

[12] M. A. Piette, D.Watson, N. Motegi, and S. Kiliccote, “Automated
critical peak pricing field tests: 2006 pilot program description and
results,” in LBNL Report 62218, Albuquerque, NM, US, May 2007.

[13] R. Sutton and A. Barto, Reinforcement learning. MIT Press, 1998.

[14] H. Varian, Microeconomic Analysis. Boston: W. W. Norton, 1984.

[15] H. R. Maei and R. S. Sutton, “GQ(A): A general gradient algorithm
for temporal-difference prediction learning with eligibility traces,” in
Proceedings of the Third Conference on Artificial General Intelligence.
Atlantis Press, 2010, pp. 91-96.

[16] H. R. Maei, “Gradient temporal-difference learning algorithms,” Ph.D.
dissertation, University of Alberta, 2011.

[7]



